Validation of the Concurrent Atomistic-Continuum Method on Screw Dislocation/Stacking Fault Interactions
نویسندگان
چکیده
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF). For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.
منابع مشابه
Anomalous dislocation multiplication in FCC metals.
Direct atomistic simulations of dislocation multiplication in fcc aluminum reveal an unexpected mechanism, in which a Frank-Read source emits dislocations with Burgers vectors different from that of the source itself. The mechanism is traced to a spontaneous nucleation of partial dislocation loops within the stacking fault. Understanding and a quantitative description of this unusual process ar...
متن کاملFinite Sized Atomistic Simulations of Screw Dislocations
The interaction of screw dislocations with an applied stress is studied using atomistic simulations in conjunction with a continuum treatment of the role played by the far field boundary condition. A finite cell of atoms is used to consider the response of dislocations to an applied stress and this introduces an additional force on the dislocation due to the presence of the boundary. Continuum ...
متن کاملInterface Effects on Screw Dislocations in Heterostructures
The governing equation of screw dislocations in heterostructures is constructed using image method. The interface type (−1 ≤ γ ≤ 1) and distance between dislocation and interface h are considered in the new equation. The Peierls–Nabarro equations for screw dislocations in bulk and semi-infinite materials can be recovered when γ = 0 and γ = −1. The soft (γ < 0) and hard (γ > 0) interfaces can en...
متن کاملAtomistically informed dislocation dynamics in fee crystals
We develop a nodal dislocation dynamics (DD) model to simulate plastic processes in fee crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fee systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip process...
متن کاملLarge scale atomistic simulations of screw dislocation structure, annihilation and cross-slip in FCC Ni
Using QM-Sutton-Chen many-body potential, we have studied the 1/2a〈1 1 0〉 screw dislocation in nickel (Ni) via molecular dynamics (MD) simulations. We have studied core energy and structure using a quadrupolar dislocation system with 3D periodic boundary conditions. The relaxed structures show dissociation into two partials on {1 1 1} planes. The equilibrium separation distance between the two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017